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ABSTRACT

Radar signal processing applications frequently require an estimate of

the Doppler centroid of a received signal. The Doppler centroid estimate is

required for synthetic-aperture radar (SAR) processing. It is also required

for some applications involving target-motion estimation and antenna pointing

direction estimation. In some cases, the Doppler centroid can be accurately

estimated based on available information regarding the terrain topography, the

relative motion between the sensor and the terrain, and the antenna pointing

direction. Often, the accuracy of the Doppler centroid estimate can be

improved by analyzing the characteristics of the received SAR signal. This

kind of signal processing is also referred to as clutterlock processing. This

publication reports on a Doppler centroid estimation (DCE) algorithm which

contains a linear estimator optimized for the type of terrain surface that can

be modeled by a quasi-homogeneous source (QHS).

Information on the following topics is presented in this publication:

• an introduction to the theory of Doppler centroid estimation

• analysis of the performance characteristics of previously reported

DCE algorithms

• comparison of these analysis results with experimental results

• a description and performance analysis of a Doppler centroid

estimator which is optimized for a QHS

• comparison of the performance of the optimal QHS Doppler centroid

estimator with that of previously reported methods
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SECTIONI

INTRODUCTION

The quality of SARimages strongly depends on the accuracy of the

knowledge of the range history of the sensor relative to the terrain during

the interval of observation. In many applications, this range (or signal

phase) history can be accurately modeled by a second-order Taylor series

expanded about the center of the synthetic aperture. The coefficient of the

quadratic term is equal to the Doppler frequency rate. An error in this

parameter causes broadening of the SAR impulse response. The coefficient of

the linear term is equal to the Doppler frequency associated with a point

located at the center of the antenna beam. An error in this parameter causes

degradation of several image-quality factors including the signal-to-noise

ratio (SNR) and the signal-to-ambiguity ratio (STAR) [i].

A SAR antenna pattern is usually symmetric with its peak gain at the

center of the beam. The best SNR and STAR are obtained by selecting a

processing-frequency band centered at the Doppler centroid. These image-

performance factors are degraded when there is a mismatch between the center

of the processing band and the Doppler centroid. In many other related

applications, such as determination of the speed of moving targets [2, 3] and

determination of antenna pointing direction [4], the system performance is

directly affected by the accuracy of the Doppler centroid estimate. The value

of developing a more accurate DCE algorithm is therefore apparent.

Doppler parameters are often computed from the sensor-target relative

position, velocity, and acceleration vectors [5]. Alternatively, these
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parameters can be estimated from the SARimage data, as demonstrated by Li et

al. [i]. The principle of this algorithm is that the intensity profile of the

range-averaged power spectrum of the image data is a function of the antenna

pattern in the azimuth dimension. The peak in the spectrum corresponds to the

Doppler centroid. That method was found to enable an improvement in the

Doppler centroid estimate whenthe ephemeris data contains significant errors.

Suchwas the case in both the Seasat and SIR-B missions. Several other

methods, similar in principle, were presented by Curlander et al. [6].

However, no performance analysis of those algorithms has been published.

Consequently, comparison of performances amongthese algorithms in the

available literature lacks a theoretical basis.

In the first part of this publication, two previously reported DCE

algorithms and a generalized algorithm are described. The performance

analysis for this generalized algorithm is then presented. This analysis

assumesthat the statistical properties of the backscatter coefficients of

targets follow those of a QHS. This assumption is valid for manyphysical

sources. Hence, the result of this analysis is applicable to a large

percentage of the SARdata. Experimental results obtained using Seasat and

SIR-B data agree well with the analysis.

One fact observed from the result of the performance analysis with a QHS

is that the error of the Doppler centroid estimate provided by the generalized

algorithm increases when the contrast within the SAR image increases. This

indicates that the generalized algorithm is not optimized for the QHS.

Further studies showed that this algorithm is also not an optimal approach for

a strictly homogeneous source (HS). This finding was the motivation for
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developing an optimal DCEalgorithm applicable to a wider range of terrain

characteristics.

The second part of this publication describes the design of an optimal

DCEprocess. In this design, a numberof optimal Doppler centroid measures

are obtained by processing a number of spatially diversed subsets of image

pixels with a linear estimator; each subset is strictly homogeneous. A single

final Doppler centroid estimate is then given by the average of the weighted

Doppler centroid measures. These weight coefficients are generated based on

the maximum likelihood criterion so as to minimize the variance of the final

Doppler centroid estimate. In the special case of the homogeneous source,

these weight coefficients are proportional to the number of pixels in each

subset.

To demonstrate the validity of this optimal DCE algorithm and the

improvement of the estimation accuracy, several Seasat and SIR-B SAR data sets

were processed. Results show that the optimal DCE algorithm generally yields

more accurate Doppler centroid estimates than the previous algorithms.
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SECTIONII

DOPPLERCENTROIDESTIMATIONFROMSARDATA

TO illustrate the concept of the DCEby using SARdata, we will start

with a simple case in which the SARecho response is due to a single point-

target (consisting of one scatterer with its dimension much smaller than the

SAR resolution). This concept is then extended to a more general case in

which the SAR echo response is contributed by a large number of distributed

targets (consisting of many scatterers in one resolution cell). Previous DCE

algorithms are briefly reviewed, and a generalized algorithm is then

presented.

A. POINT-TARGET SAR ECHO RESPONSE

The echo response of a SAR from an isotropic point-target reflector can

be modeled by its amplitude and phase variations in the along-track dimension

[5], i.e.,

1/2
Rp(t) = W a (t) • exp{-j_(t) }

(I)

where Wa(t) is the azimuth antenna weighting and _(t) is the phase history,

which is a function of the sensor-target range history. The phase history can

be modeled by a quadratic function, i.e.,

1 • t2 _
_(t) = 2K fdc " t + _" fr I

(2)
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where fdc is the Doppler centroid and fr is the Doppler frequency rate. For

this simple case, the Doppler centroid can be determined directly from the

echoes by tracing the phase-change rate at the time of the response peak. For

a response with a large time-bandwidth product, the amplitude of the Fourier

transform of this response takes the same form. Therefore, one can also

determine the Doppler centroid in the frequency domain. The echo response and

spectrum in the azimuth dimension for a point-target are illustrated in

Figure I. Note that tO satisfy Eq. (I), isotropy is not an essential property

of the target. An adequate and less stringent condition is that the target

backscatter be independent of the azimuth angle change over the illumination

period. It is believed that manytypes of targets exhibit this property,

especially for cases with a narrow antenna beamwidth. This property will be

assumedin the following analysis.

B. DISTRIBUTED-TARGETRESPONSE

In determining the Doppler centroid for a distributed target, two

problems maybe encountered. First, tracing the phase change for each target

by analyzing the response data in the time domain is impossible because the

SARecho response is a superposition of manypoint-target responses. Second,

fading may exist in each spectral componentbecause of the random-phase

process of the naturally occurring targets. Consequently, the Doppler

centroid estimate processed from a single azimuth power spectrum exhibits

significant error.
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A commonly adopted method [7] is to obtain a few azimuth power spectra

from the response data, average them to improve the signal-to-noise ratio, and

extract the Doppler centroid by searching for the peak of the averaged

spectrum. Li [I] noted that this method usually cannot provide high accuracy

and showed that a much more accurate estimate can be obtained from the range-

averaged spectrum of a processed SAR image. In the following, we summarize

processing procedures of algorithms given by both Li et al. and Curlander et

al.

i. Algorithm I. (Li et al.)

Process the SAR echo response into a full-resolution image with an

initially estimated Doppler centroid and an accurate Doppler frequency rate.

Fourier transform this image data in the azimuth dimension and perform

detection to obtain the power density for each frequency channel. Average

these detected spectra along the range dimension and search for a frequency

channel which has the energy on both sides balanced. Iteration of this

process may be required if the initial estimate used for processing the image

contains a large error.

2. Algorithm IIo (Curlander et al.)

Process the SAR echo response into four independent single-look images.

Each image uses one-fourth the total processing bandwidth, and the spectra of

these images are consecutive. Then compute the following quantity:
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A_. = E1 + E2 - E3 - E4 (3)
4

i=l

where E i denotes the total energy in the i-th look. Repeat this procedure for

several selected values of the Doppler centroid. Perform linear regression

for E as a fuction of the processing Doppler values. The Doppler centroid

estimate is selected from the intersection of the linearly fitted line and the

line of _E = 0.

Both of these algorithms are illustrated in Figure 2. Algorithm I

described above requires processing full-resolution SAR images, which is a

disadvantage if the normal processor output is multi-look (reduced-resolution)

imagery. Algorithm II involves a relatively large computation load and may

not be efficient. Algorithm III (described below) is a generalized DCE

algorithm which was evolved from the above algorithms. The performance

analysis of algorithm III can be easily made and is applicable to the above

algorithms.

3. Algorithm III.

The first step of this algorithm is to process the SAR echo response

into N independent single-look images, each with I/N of the total processing

bandwidth, where N is an even number and the spectra of these images are

consecutive. Then the following quantity is computed:
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N/2

Z Ei -

[=1

N

i=N/2+l

N

i=l

(4)

where E i denotes the total energy in the i-th look. Obtain the Doppler

centroid estimate by subtracting the estimated error Af of the processing

Doppler (Af - C_ 1 _, C 1 is given in Eq. (35)) from the processing Doppler.

Repeat this procedure until _E approaches zero.

It is obvious that this algorithm is equivalent to algorithm I when N is

equal to two. With N equal to four, this algorithm is very close to

algorithm II. However, there is a slight difference in the performances,

which will be discussed later.
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SECTIONIII

PERFORMANCEANALYSISOFDCEALGORITHMIII

In DCEalgorithm III, the accuracy of the estimated Doppler centroid is

determined by the statistical characteristics of the normalized energy

difference AE. It is therefore necessary to formulate the probability density

function of AE. This pdf is used to derive the standard deviation of the

Doppler centroid estimate.

A. SAR IMPULSE RESPONSES OF INDEPENDENT LOOKS

The SAR impulse response can be expressed as the convolution of the

returned point-target echo with a reference function. If there is no

amplitude weighting included in the reference function, the impulse response

in the azimuth dimension is given by

h(t) = Rp(t) Q {exp[j_(t)] Rect(t/T)}
(5)

where Q denotes the convolution, Rp(t) is the SAR point-target response

after range correlation, and Rect(.) is the rectangular function defined by

i Itl _ T/2Rect (t/T) = 0 otherwise
(6)

where T denotes the processing aperture width. For a mismatch between the

processing Doppler centroid and the true Doppler centroid by Af, the reference

function is equivalent to the previous one having a time delay _f/fr, i.e.,
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h(t,Af) = Rp(t) Q {exp[j_(t)]

 ect(<t-Aflfr>i )} (7)

For a reference function with a large time-bandwidth product (TBP), the

magnitude of the impulse spectrum takes the same form as the antenna weighting

in the time domain, i.e.,

iF{h(t,Af) } i = W a

Rect ((f - fdc - Af)/PBW) (8)

where PBW is the processing bandwidth given by fr " T.

define

Wa (f) = Wa ( (f - fdo)/fr)

It is convenient to

(9)

Images produced by a coherent system are corrupted by speckle noise.

Methods of noncoherent averaging that reduce the speckle noise and are based

upon properties of spatial or frequency diversity [8] have been reported

[9,10]. The trade-off of speckle reduction is the broadening of the

resolution width. In SAR, statistically independent looks can be generated

from spatially separated subapertures. For t_e case with the total number of

looks being equal to N, the impulse response corresponding to the i-th

subaperture can be expressed by

hi(t,Af ) = Rp(t) Q {exp[j_(t)]

Rect ( (t - t i - Af/f r) /(T/N) ) } (I0)
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where t i is the time delay associated with the i-th subaperture and

t i = (i - i) T/N - T/2 (Ii)

If the TBPof each subaperture is also large, the spectrum of the i-th

impulse response can be approximated by

IF{hi(t,Af) } i = Wal/2(f)

Rect ( (f - fi - Af) /(PBW/N) ) (12)

where

fi = fdc + fr " ti
(13)

The following property can be derived directly from this approximation:

hi(t,Af ) Q hj(t,Af) = 0 for i _ j
(14)

If the azimuth ambiguity (spectral aliasing due to limited pulse repetition

frequency) makes a negligible contribution to the impulse response, the

following properties can be shown to be true:

I PBW + Afi_ h i (t,Af) 2 dt =

-PB____WW+ Af
2

^

W a (f) df

(15)
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and

PBW

i_ hi(t,Af) Q hi.(t,Af) 2 dt = _2(f) df

-PB____W+ Af
2

(16)

where * denotes the complex conjugate.

B. TARGET MODEL

The concept of the quasi-homogeneous source has been brought forth by

Carter and Wolf [ii] to model many physical light sources and to derive

coherence properties and radiometric properties of light generated by such

sources.

In SAR, a similar model was used by Raney [12] to derive the SAR system-

transfer function and some useful properties. With this model, the spatial

waveform of the SAR target reflection can be expressed as

G(a) = AI/2 (a) X(a) (17)

where a denotes the spatial coordinates of the along-track dimension and A(a)

denotes the backscatter coefficient, which is also known as the reflectivity

density. A(a) is assumed to be slowly varying. X(a) is a complex random

process resulting from the phase variation of the numerous small scatterers;

it has dimensions comparable to the wavelength of the SAR. X(a) is assumed to
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be a wide-sense stationary zero-mean complex Gaussian random process with

independent quadrature components. The second and fourth moments of X are

e[X(a I) X*(a2)] = 8(a I - a2) (18)

e[X(a I) X*(a 2) X(a 3) X*(a4)] = 8(a I -a2) 8(a 3 -a4)

+ 8(a I - a4) 8(a 2 - a3) (19)

where 8(.) denotes a finite-impulse response which can be approximated by the

Dirac's Delta function when the SAR resolution width is much greater than the

wavelength.

C. PDF OF THE ENERGY OF A SINGLE-LOOK IMAGE

In general, a stable sensor flight path is required during SAR mapping

to maintain a stable sensor-target geometry and a slow drift of the Doppler

centroid. This SAR requirement is meant to make the image processing a much

easier task. In this case, the SAR image can be expressed as the convolution

of the target waveform and the impulse response. The image generated from the

i-th look, with error _f in the processing Doppler centroid, is given by

Gi(a,Af) = G(a) Q hi(a,Af)
(20)

It is desirable to express the above relationship as a function of time by

assuming that the sensor is moving parallel to the target surface and with a

constant velocity, that is

3-5



Gi(t,Af) = G(t) Q hi(t,Af) (21)

The total energy contained in this image is given by

I i

E i = G i(t,Af) Gi* (t,Af) dt (22)

Notice that for simplicity, the integration along the other dimension (range)

is not shown. For this band-limited system, E can be viewed as the summation

of a countable number of random variables. Therefore, the probability density

function (pdf) of E i approaches a Gaussian distribution when the number of

random variables (or the number of resolution elements contained in the image)

becomes large. The mean and variance can be shown to be

The proof of the above equations is given in Appendix A. The mean of E± is

simply the product of energy contained in the i-th impulse response and the

integral of the reflectivity density.

Statistically, E i and Ej are independent for i _ j if the following

conditions are satisfied for any positive integer n:

3-6



e[Ei (Af) Ej (Af) n] = ne[Ei (Af) ] e [Ejn(Af) ] (25)

D. PDFOF THENORMALIZEDENERGYDIFFERENCE

Since the arithmetic summationof Gaussian randomvariables is also a

Gaussian randomvariable, the total energy E and energy difference DE alsoT

follow Gaussian distribution, with their meanand variance given by the

following equations:

2 dt
• IA(t) dt

(26)

dt (27)

dli=l

2
w

N

i=N/2+l

When the processing Doppler centroid approaches to the true Doppler

centroid, e[DE(Af)] approaches zero. For images containing a large number of

resolution elements, it can be proved that V[ET(Af)]/e2[ET(Af)] is also quite

small. Under these two conditions and using the properties of the QHS given
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above, the pdf of AE(_f) can be accurately modeled by a Gaussian distribution,

with its mean and variance given by

e[_(Af)] = e[DE(Af) ]/e[E T(Af)]
(30)

v[AE(Af)] = v[DE(Af)]/e 2[E T(Af)]
(31)

Using Eqs. (15) and (16), the following resultscan be obtained:

PBW

A _

Wa(f) df- Wa(f) df

-PBW + Af Af
2

e[AE(Af) ] = (32)

I _-_ + Af

-PB_____WW+ Af
2

A

Wa(f) df

Wa 2 df ° A 2 dt

+ Af
2

v[AE(Af)] = (33)

A .Wa(f) df • A(t) dt

+ Af
2

For small Af, the energy difference between two sides of the antenna

pattern is nearly proportional to Af; therefore, e[AE(Af)] can be approximated

by

=

3-8
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e[AE(Af) ] = C 1 • Af (34)

whe re

C1 =

2 (Wa (0) - Wa(PBW/2) )

PBW

W a (f) df

-PB___W
2

(35)

C 1 is a measure of the directivity of the antenna pattern. In Eq. (33),

is a measure of the time-resolution constant [13]. Hence, it can be

represented by the product of a constant, C 2, and I/PBW in cases where Af is

much smaller than PBW. Also, we may define the contrast of the target-

reflectivity profile to be

_a (t) dt

1 A(t) dt

(36)

Thus, v[AE(Af)] can be expressed as

v[AE(Af)] = C2( p + I)/(PBW • T a) - C2( p + I)/N s (37)
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where T a is the time corresponding to the size of the image along the azimuth

and N s is defined as the total number of resolution elements of the image.

E. STANDARD DEVIATION OF THE DOPPLER CENTROID ESTIMATE

From the statistical properties of AE(Af) given above, we can form the

joint pdf of Af and _E as follows:

p(Af,AE) = I/DF
C O (2_C 2(p + I)/N s) 1/2 exp

- (AE - CiAf )2_

forI'fl-< IA I (38)

where DF is chosen such that Eq. (37) is satisfied. C O is determined from the

condition _ p(Af,AE) • dAf • dAE = i. The contour plot of this pdf is shown

in Figure 3. The Doppler centroid is determined with the criterion AE = 0.

Therefore, the distribution of error of the Doppler centroid estimate is given

by the conditional pdf p(Af/AE = 0) where

p(AflAE = 0) = p(Af,AE) Ip(AS. = 0) (39)

An analytical expression for p(AE = 0) is generally difficult to obtain.

However, when N s is large enough such that p(DF/2, _E = 0) approaches zero, we

may find that C O = 1 and

p(AE = 0) = II(DF • C I)
(40)
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Finally, the pdf of the Doppler centroid estimation error is given by

p(_f/AE = 0) =
C 1

(2KC 2(p + I)/N s) 1/2

exp [- (CI Af)2_
{2c2(p ; 1)lm_J (41)

The Doppler centroid estimate is unbiased, and its standard deviation

can be shown to be (C2( p + I)/Ns)i/2/CI under the conditions given above.

F. AZIMUTH AMBIGUITY EFFECT

Another possibie source of error in the Doppler centrold estimate is due

to the azimuth ambiguity, which is caused by aliasing resulting from the

limited pulse repetition frequency (PRF) employed by most radar [14]. The

effect of the azimuth ambiguity on an SAR image is that a "ghost image" of the

terrain outside of the beamwidth of the antenna mainlobe would be superimposed

onto the image of the terrain within the mainlobe.

By including the azimuth ambiguity effect, the mean and variance of the

normalized energy difference are given by

If2 (k)^

Zk 11 Wa(f)

cwf I (k)

df • A(t) dt -I Wa(f) df • A(t)
I

_k J f2 (k) rk

e[AE(Af) ] =

If3 (k)
Z Ŵ a (f)

k <Jfl (k)

df "I A(t) dt}

JT k

(42)
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where

v [A_ (af) ]

Z _2(f) df ° A 2(t) dt

k <Jfl (k) k

If3 (k) ^

k_ lJfl(k) Wa(f)

df •

IT k A(t) dt} 2

(43)

fl(k) = Af + kPRF - PBW/2

f2 (k) = Af + kPRF

f3(k) = Af + kPRF + PBW/2 (44)

The terms Tk, T_k, and Trk are the domains of integration for targets which

are associated with Doppler frequencies between fl(k) and f3(k), fl(k) and

f2(k), and f2(k) and f3(k), respectively.

The mean of the normalized energy difference is not very sensitive to

the error of the processing Doppler because of the ambiguity effect. There is

very little change to the magnitude of v[_E(Af)]. This effect leads to an

increase in the standard deviation of the Doppler centroid estimate. However,

the azimuth ambiguity is generally reduced by selecting a reasonably large

PRF. In such cases, its effect on the Doppler centroid estimate is not

significant and can be neglected.
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G. SYSTEM-NOISEEFFECTONDOPPLERESTIMATION

The previous sections did not treat the effect of SARsystem noise on

the DCEprocess. There are several types of noise sources in the SARsystem:

noise from the atmosphere, noise contributed by the receiver, and the

quantization noise. If we assumethat these noise sources are additive, the

single-look SARimage can be expressed as

Gi(t) _ G(t) Q hi(t) + n(t) (45)

The bandwidth of n(t) is limited by the bandwidth of the correlator. Assume

that n(t) is a Gaussian complex process with independent quadrature components

and is uncorrelated with X(t) . The meanand variance of the normalized energy

difference can be found to be

e[AE(_f) ] = CIAf / (I + I/SNR) (46)

C 2(p + i) + 2/SNR + I/SNR 2
v[A_(Af)] = (47)

N s(l + I/SNR) 2

The standard deviation of the Doppler centroid estimate is given by

[(C2( p+ i) + 2 SNR -I + SNR-2)/Ns]I/2/CI. The error of the Doppler centroid

estimate decreases when any of the following occur:

(i)

(2)

(3)

(4)

the number of resolution elements (N s) increases

the signal-to-noise ratio (SNR) increases

the antenna directivity (C I) increases

the reflectivity contrast (p) decreases
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SECTIONIV

EXPERIMENTALRESULTS:GENERALIZEDDCEALGORITHM

The generalized DCEalgorithm, implemented with four looks, was applied

to several Seasat and SIR-B data sets. The standard deviation of the

estimated Doppler centroid was calculated by using the sametechnique

originally described by Li [I]. A SARdata set with a size capable of

producing a ik (range) x 4k (azimuth) pixel (full-resolution, slightly

oversampled) image is processed to obtain 16 Doppler centroid estimates which

correspond to spatially consecutive image blocks having 64k (range) x 4k

(azimuth) pixels. These Doppler estimates are fitted by a linear function of

the range. The root-mean-square deviation from the linear fit is taken to be

the standard deviation of the Doppler centroid estimate. This method is valid

because the actual Doppler centroid can be accurately approximated by a linear

function of the range for both the Seasat and the SIR-B cases. The standard

deviations of the Doppler centroid estimates from several data sets are

tabulated in Table I. The predicted standard deviations of the Doppler

centroid estimates and the contrasts of the reflectivity profile of the source

are also listed in Table I.

These reflectivity-contrast values are measured from the full-resolution

image data by using the method described below. It is well knownthat the

observed intensity of each full-resolution image pixel is the product of the

local reflectivity of the source and a randomspeckle noise with an exponen-

tial distribution. If we assumethat the reflectivity of the source and the
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Table I. Results of DCEAlgorithm III and Prediction

DATA SET

iSEASAT REV. 1183

GULF OF CALIFORNIA

SEASAT REV. 762

SEASAT REV. 1254

GARDEN CITY, KANSAS

SEASAT REV. 351

SAN GABRIEL MTNS.

SEASAT REV. 351

L.A. AIRPORT, CALIF.

SIR-B REV. 6

W. MONTREAL, QUEBEC

SCENE CONTENT

UNIFORM ROUGH

OCEAN SURFACE

PERIODIC

OCEAN WAVES

AGRICULTURE

FIELD

MOUNTAINS

AIRPORT IN

URBAN AREA

URBAN AREA

_fdc

ESTIMATION

i. 5 (Hz)

2.0

2.7

4.1

8.1

10.4

PREDICTION

1.4

i

1.8

2.8

3.7

4.6

4-2

p+l

1.02

1.6

3.0

4.2

7.3

ii .2



random speckle noise are independent, the contrast of the source reflectivity

is given by

M 2
1 (48)

p = 2M 1

where M 1 is the mean pixel intensity and M 2 is the mean squared pixel

intensity. The antenna directivity constant C 1 and the effective bandwidth

constant C 2 are calculated based on the given antenna pattern [15].

Table I shows that the predicted Doppler centroids are very close to the

Doppler centroids estimated from the SAR data for a uniform ocean surface,

periodic ocean waves, and agriculture fields. This indicates that the

performance analysis given in Section II does apply well to the QHS. Table I

also shows that large differences between predictions and estimates exist for

the mountain and urban sources. This indicates that these sources are not

accurately modeled by a QHS. However, the prediction does provide an

indication of the growth of estimation errors for these cases.
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SECTIONV

OPTIMALDOPPLERCENTROIDESTIMATIONFORQHS

The DCEalgorithms described above do not yield an optimal Doppler

centroid estimate for a QHS. This fact is illustrated by the following

example. Consider a source consisting of two equal areas, each of which has a

uniform reflectivity and a very large signal-to-noise ratio. Assumethat the

reflectivity level of one area is muchgreater than the other. The errors of

the Doppler centroid estimates obtained from each individual area are almost

equal; therefore, arithmetic averaging reduces the estimation error by a

factor of i/_. However, the error of the Doppler centroid estimate obtained

by applying those algorithms described in Section IIB over the entire area

would be almost equal to those from each individual area.

In the above example, the greater uncertainty contained in the Doppler

centroid estimate from those algorithms is due to the fact that the weight is

given by the percentage of energy contained in each subarea instead of by the

size of each subarea. This can be seen from the following expression for _E:

ET(i) ET(2)AE = AE(1) -- + AE(2) (49)
E T ET

where _E(1) and AE(2) stand for the normalized energies corresponding to those

subareas, and ET(1) and ET(2) are the total energies corresponding to those

subareas.
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The above example also gives a hint for an optimal approach. A QHS can

be thought of as a source consisting of a set of spatially segregated

subsources, each of which is a homogeneous source. The first step of an

optimal DCE process for a QHS (also called an optimal QHS-DCE process) is to

obtain a set of optimal Doppler centroid estimates from these subsources. The

next step is to obtain a final estimate based on these preliminary results.

The solution for the second step is quite obvious. An optimal Doppler

centroid estimate based on the maximum likelihood criterion is given by the

weighted sum of those preliminary estimates, where each weight coefficient is

inversely proportional to the variance of each preliminarY estimate. Let

_fdc(k) be the standard deviation of the Doppler centroid estimate of the k-th

subsource. The associated weight coefficient to be used in the optimal QHS-

DCE process is given by

W c (k) =
K _

(;fdc (k)

k=l

(5O)

The standard deviation of the final Doppler centroid estimate is given by

= 2 2

(;fdc W c(k) (;fdc(k)

k=l

= (_fdc (k)

k=l

(51)
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The optimal homogeneous-source DCE algorithm using a linear estimation

approach has been developed and will be reported in another publication [16].

The detailed analysis of this algorithm will not be repeated here. However,

an introduction to the problem and the optimization analysis involved are

given in Appendix B. In the following we describe the processing procedures,

which include both time domain and frequency domain approaches. The time

domain approach can be incorporated in the optimal QHS-DCE process more easily

than the frequency domain approach.

A. OPTIMAL DOPPLER CENTROID ESTIMATION FOR HS

The frequency domain approach is used to obtain the range-averaged power

density spectrum from a full-resolution image. The next step is to convolve

this spectrum with W a(f)/W (f), where W a(f) is the derivative of W a(f) with

respect to f. After convolution, the frequency associated with a sample,

having its value closest to zero, is the Doppler centroid estimate.

The time domain approach is to process the SAR echo response into N

independent single-look images, each with I/N of the total processing

bandwidth, where N is an even number. These single-look images are weighted

A v

in the frequency domain with Wa(f)/W_(f), by incorporating this weight

function in the reference function. Compute _E according to Eq. (4). The

Doppler centroid estimate is then obtained by subtracting the estimated

processing Doppler error Afd c (given in Eq. (52)) from the processing Doppler.

Repeat this procedure until _E approaches zero. The estimated processing

Doppler error is given by
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Afdc =

PBW

f l̂
Wa (f) I

^

-PBW Wa (f)

2

PBW

2

df

df

(52)

The standard deviation of the Doppler centroid estimate Obtained from

this algorithm is given by

PBW

2

(_fdc " f (SNR) (53)

Ns1/2

The polynomial function f(SNR) is determined by the numerical analysis method.

For a large SNR, the value of f(SNR) is equal to one.

In the implementation of the optimal QHS-DCE algorithm, determination of

subsource boundaries is not necessary. A simple method is to use the

intensity histogram of the multi-look image. The procedure includes the

following: Perform multi-look summation to generate the N-look image (to

reduce speckle uncertainty) and its histogram. Divide the intensity range,

covering more than 99% of the total image pixels, into K intensity intervals.

Preliminary Doppler centroid estimates are then obtained from subsets of

pixels having the same intensity level. A detailed block diagram of this

optimal QHS-DCE process is illustrated in Figure 4.
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SECTION VI

EXPERIMENTAL RESULTS: OPTIMAL QHS-DCE ALGORITHM

The optimal QHS-DCE algorithm was applied to the same SAR data sets

listed in Table I. The same linear-fit method was used to estimate the

standard deviation of the Doppler centroid estimate. Results are listed in

Table II. In these cases, the center portions of the linear-fitted lines

obtained from both algorithms differ by an amount much smaller than the

standard deviation listed in Table II. An improvement of the estimation

accuracy can be seen in all the cases, even in urban and mountain sources.

However, for urban and mountain sources, the Doppler centroid estimates

are not as accurate as those obtained from the ocean and agriculture areas.

This could be due to the fact that the reflectivity profiles of these sources

contain high-frequency variations, which are beyond the assumptions of a QHS.

Also, the assumption of phase independency among numerous small scatterers may

not be true for the urban sources. It is believed that these factors degrade

the accuracy of the Doppler centroid estimates.
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Table II. Results of an Optimal QHS-DCEAlgorithm

DATASET

SEASATREV. 1183
GULFOFCALIFORNIA

SEASATREV. 762

SEASATREV. 1254
GARDENCITY, KANSAS

SEASATREV°351
SANGABRIELMOUNTAINS

SEASATREV. 351
L.A. AIRPORT,CALIF.

SIR-B REV. 6
W. MONTREAL,QUEBEC

SCENECONTENT

UNIFORMROUGH
OCEANSURFACE

PERIODIC
OCEANWAVES

AGRICULTURE
FIELD

MOUNTAINS

AIRPORTIN
URBANAREA

URBANAREA

(_fdc

ALGO.III

i. 5 (Hz)

2.0

2.7

4.1

8.1

10.4

OPTIMAL

1.0

1.2

1.5

2.8

3.3

5.5
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SECTIONVII

CONCLUSION

Wehave presented a DCEalgorithm which is generalized from previously

reported algorithms. Detailed performance analysis was given and validated by

the experimental results. This performance analysis is directly applicable to

Li's algorithm. In Curlander's algorithm, the Doppler centroid estimate can

be slightly more accurate whenthe selected processing Doppler values cover a

wide range (to increase the effective total numberof resolution elements) and

the azimuth ambiguity levels contributed from two sides of the main targets

still balance well.

In the second part of this publication, an optimal DCE algorithm for the

quasi-homogeneous source was presented. Experimental results show that it

does improve the accuracy of the Doppler centroid estimates for all the tested

data sets.
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APPENDIXA

PROOFOF (23) ANDPROOFOF (24)

A. PROOFOF (23)

From Eqs. (21) and (22), the meanof Ei(_f) can be expressed by

e[Ei (Af) ] = e[G(t,)G*(t,')]hi(t - t',Af)

hi(t - t",Af) dtdt'dt" (AI)

By use of Eqs. (17) and (18), it can be shownthat

e[G(t')G*(t")] = Al/2(t')Al/2(t")_(t' - t") (A2)

Substituting (A2) in (AI), we have

e[Ei(Af)] = IIlhi(t - t',Af) 12 A(t')dt'dt

(A3)

In (A3), hi(t - t',_f) can be viewed as a del_a function because of the

assumption that A(t') is a slowly varying function. This implies

e[Ei(Af)] = Ilhi(t,Af) 12 dt " IA(t)dt

(A4)
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B. PROOF OF (24)

From Eqs. (21) and (22) the mean of E 2(Af) can be expressed by
t 1

e[E2(Af)] = I .... le[G(tl)G*(t2)G(t3)G*(t4)]

× hi(t - tl,Af)h[( t - t2,Af )

hi(t, - t3,Af)h.[(t' - t4,Af )

dtdt'dtldt2dt3dt 4

By use of (17) and (18), it can be shown that

e[G(t I)G* (t 2)G(t 3)G*(t 4) ] = A I/2(t I)A I/2(t 2)A I/2(t 3)A I/2(t 4)

[8(t I - t2)8(t 3 - t4) + 8(t I - t4)8(t 2 - t3) ]

(A5)

(A6)

Substituting (A6) in (A5), we have

e[E 2(Af) ] = e 2[E i(Af) ]

+ hi<<l ® hZ<tl
2

A (t I) A (t2) dtldt 2

(A7)
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In (A7), h i h i can be viewed as a delta function because of the assumption

that A(t') is a slowly varying function. This implies

II 12 IA2v[Ei(Af)] = hi(t,Af ) Q _(t,Af) dt ° (t)dt (AS)
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APPENDIX B

OPTIMAL DOPPLER CENTROID ESTIMATION FOR HS

The spectrum of the SAR response from a homogeneous source can be

expressed by the following function:

^ A A

S(f) = pW(f - fdc ) X(f)X*(f) (BI)

A

where p is proportional to the power of the response and X(f) is the Fourier

A

transform of random process X(t) in Eq. (17). X(f) can be shown to be a zero-

mean complex Gaussian random process with independent quadrature components.

A

The second and fourth moments of X are of the same form as those of Eqs. (18)

A

and (19). W(f - fdc ) is equal to the antenna pattern Wa(f) given in Eq. (9).

by

The Doppler centroid estimate from a linear estimator can be expressed

A A

fdc(fl ) = fl + Af(fl) (B2)

where

^ I fl+F/2Af (fl) =

Wfl-F/2

S(f)g(f - fl) df (B3)
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Here, g(f) is the weight function; fl is the frequency reference of g(f) . F

is the frequency bandwidth over which the estimation is performed. The mean
^

and variance of Af(f I) can be expressed by the following equations when fl

approaches fdc-

A

e [Af (fl) ] -_ P

"F/2

A

W(f)g(f)

-F/2

I FI2 ^,df + (fl - fdc) ° p W (f)g(f) df (B4)

J -F/2

and

i Fl2

^ ^

v[Af(fl) ] __ p2 W2(f)g2(f) df

J -F/2

Here, we shall find a function for g(f) which yields an unbiased and

optimal estimate of fdc- The "optimal" estimate is interpreted here as the

one having the least mean-square error. Therefore, g(f) must minimize

v[Af(fl)] and satisfy the following:

I FI2

-FI2

A

W(f)g(f) df = 0

(B5)

(B6)

P
I FI2 ^ ,

W

J -FI2

(f)g(f) df = 1
(B7)
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Let g(f) = C gl(f) g2(f), and solve for C from Eq. (B7). Substituting C in

Eq. (B5), the problem becomes one of maximizing

W' (f) gl (f) g2 (f) df

F/2

F/2 ŵ2(f)g_(f)g_(f)

J -F/2

df

(BS)

A

By choosing gl(f) to be equal to I/W(f) and using the Cauchy-Schwarz

Inequality, we can show that the solution for g2(f) is the function

A A
T

W (f)/W(f) . Hence the weight function g(f) is given by

i w'If[
g(f) = • (B9)

^

w 2 (f)

P df

_' -F/2

A

For a conventional SAR antenna pattern, W(.) is symmetric and its first-

order derivative is asymmetric, i.e.,

^ ^

W' (f) = - W' (-f) (BI0)

This implies that g(f) is also asymmetric and satisfies (B6).
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